Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Main subject
Language
Year range
1.
Malaysian Journal of Health Sciences ; : 51-64, 2018.
Article in English | WPRIM | ID: wpr-732484

ABSTRACT

Each year, influenza A infections have caused tremendous death rate as high as 300,000-500,000 globally. Althoughthere are effective anti-influenza agents and vaccines, high mutational rate among influenza A viruses renders dramaticdecline in the effectiveness of anti-influenza agents or vaccines in certain individuals. The situation is further complicatedby limitations in influenza vaccine production, for instance, long production period, limited vaccine capacity and lackof cross-protection against various influenza A virus strains. To solve these issues, development of universal influenzavaccine based on conserved antigens such as non-stuctural protein 1 (NS1) has been endeavoured. NS1 protein is highlyconserved in all influenza A virus strains known by far, produced abundantly on infected cell surfaces and responsible formaintaining virulence. Furthermore, cytotoxic T-lymphocytes that are active against NS1 were also reported to be ableto avoid shedding of influenza in hosts. To better inhibit influenza infections, oral immunization has long been proposeddue to feasibility of this method to be implemented and safer for recipients while able to target influenza A viruses fromthe entry point. Lactobacillus has been vastly studied for its roles as bacterial carrier in oral vaccine development dueto its significant probiotic properties. For examples, stimulation of immune responses in oral and airway mucosal layers,high colonization in oral and airway mucosal layers and great natural adjuvant effects. In this light, influenza universaloral vaccine developed using NS1 dan Lactobacillus should be further studied in influenza oral vaccine design.

2.
Malaysian Journal of Health Sciences ; : 23-31, 2015.
Article in English | WPRIM | ID: wpr-626583

ABSTRACT

Many studies have shown that probiotic strains added to a number of probiotic products are not compatible to that of claimed. It is thus of note to validate probiotic strains added to probiotic products. In this study, three probiotic drinks, A, B and C, were cultured on MRS agar and the number of bacterial colonies was enumerated. The bacterial counts recovered from A (9.3 ± 6.9 log CFU/ml) and C (9.0 ± 6.9 log CFU/ml) were signifi cantly higher than B (5.2 ± 3.5 log CFU/ml) and achieved the minimal amount recommended for probiotic bacteria. All of the isolates appeared as gram positive rods microscopically and were proven to be catalase negative. However, there were only A1, A2, B4 and C1 that were highly tolerant to the gastrointestinal pH 3 to 6. The four isolates produced and secreted antimicrobial substances which inhibited the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). C1 showed the greatest growth inhibition by forming 17.50-mm and 17.85-mm inhibition zones against E. coli and S. aureus, respectively. The 16s rDNA sequencing and phylogenetic analysis were performed to further identify the twelve isolates. The twelve isolates were found to be Lactobacillus (L.), particularly L. casei and L. paracasei. However, the bacteria isolated from drink B were incompatible to the labelled ones. In conclusion, probiotic drinks are possible to contain different bacterial counts and probiotic strains from the labelled ones. These differences might affect health benefi ts rendered by probiotic strains to consumers.


Subject(s)
Probiotics
SELECTION OF CITATIONS
SEARCH DETAIL